A Hybrid Air Quality Prediction Model Based on Empirical Mode Decomposition

نویسندگان

چکیده

Air pollution is a severe environmental problem in urban areas. Accurate air quality prediction can help governments and individuals make proper decisions to cope with potential pollution. As classic time series forecasting model, the AutoRegressive Integrated Moving Average (ARIMA) has been widely adopted prediction. However, because of volatility lack additional context information, i.e., spatial relationships among monitor stations, traditional ARIMA models suffer from unstable performance. Though some deep networks achieve higher accuracy, mass training data, heavy computing, cost are required. In this paper, we propose hybrid model simultaneously predict seven indicators multiple monitoring stations. The proposed consists three components: (1) an extended matrix several adjacent stations; (2) Empirical Mode Decomposition (EMD) decompose data into smooth sub-series; (3) truncated Singular Value (SVD) compress denoise expanded matrix. Experimental results on public dataset show that our outperforms state-of-art both accuracy cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Willingness-to-pay Prediction Based on Empirical Mode Decomposition

Long-term prediction of customer preferences is becoming essential for effective product portfolio design in broad industrial sectors such as automotive, aerospace, consumer electronics, where typical concept-to-release times are long (24-60 months). However, nonlinear and nonstationary evolutions of customer preferences hinder accurate prediction of the futures of customer preferences. This pa...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A New Two-dimensional Empirical Mode Decomposition Based on Classical Empirical Mode Decomposition and Radon Transform

Empirical mode decomposition is a method to decompose signals proposed by N.E.Huang et. al in 1998. It can extract adaptively the oscillatory modes at each time from a complex signal, namely it can decompose the signal into a finite (often less) number of intrinsic mode functions (IMFs). With Hilbert transform, the IMFs yield instantaneous frequencies as functions of time, that give sharp ident...

متن کامل

Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm

Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsinghua Science & Technology

سال: 2024

ISSN: ['1878-7606', '1007-0214']

DOI: https://doi.org/10.26599/tst.2022.9010060